
So you are considering A Level Chemistry?

This pack contains a programme of activities and resources to prepare you to start an A level in Chemistry in September. It is aimed to be used after you complete your GCSE, throughout the remainder of the summer term and over the Summer Holidays to ensure you are ready to start your course in September.

Book Recommendations

Periodic Tales: The Curious Lives of the Elements (Paperback) Hugh Aldersey-Williams

ISBN-10: 0141041455

http://bit.ly/pixlchembook1

This book covers the chemical elements, where they come from and how they are used. There are loads of fascinating insights into uses for chemicals you would have never even thought about.

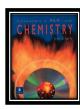
The Science of Everyday Life: Why Teapots Dribble, Toast Burns and Light Bulbs Shine (Hardback) Marty Jonson

ISBN-10: 1782434186

http://bit.lv/pixlchembook2

The title says it all really, lots of interesting stuff about the things around you home!

Bad Science (Paperback) Ben Goldacre



ISBN-10: 000728487X

http://bit.ly/pixlchembook3

Here Ben Goldacre takes apart anyone who published bad / misleading or dodgy science – this book will make you think about everything the advertising industry tries to sell you by making it sound 'sciency'.

Calculations in AS/A Level Chemistry (Paperback) Jim Clark

ISBN-10: 0582411270

http://bit.ly/pixlchembook4

If you struggle with the calculations side of chemistry, this is the book for you. Covers all the possible calculations you are ever likely to come across. Brought to you by the same guy who wrote the excellent chemguide.co.uk website.

Salters' Advanced Chemistry: Chemical Storylines

Do not feel you need to buy the latest edition (unless you are doing Salters chemistry!) You can pick up an old edition for a few pounds on ebay, gives you a real insight into how chemistry is used to solve everyday problems from global pollution through feeding to world to making new medicines to treat disease.

1 2

Videos to watch online

Rough science - the Open University - 34 episodes available

Real scientists are 'stranded' on an island and are given scientific problems to solve using only what they can find on the island

Great fun if you like to see how science is used in solving problems.

There are six series in total

http://bit.ly/pixlchemvid1a

http://www.dailymotion.com/playlist/x2igjq_Rough-Science_rough-science-full-series/1#video=xxw6pr

or

http://bit.ly/pixlchemvid1b

https://www.youtube.com/watch?v=IUoDWAt259I

Research activities

Use your online searching abilities to see if you can find out as much about the topic as you can. Remember it you are a prospective A level chemist, you should aim to push **your** knowledge.

You can make a 1-page summary for each one you research using Cornell notes: Cornell note taking is what we use for lessons!

http://coe.jmu.edu/learningtoolbox/cornellnotes.html

Task 1: The chemistry of fireworks

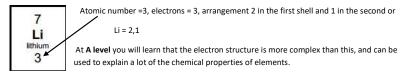
What are the component parts of fireworks? What chemical compounds cause fireworks to explode? What chemical compounds are responsible for the colour of fireworks?

Task 2: Why is copper sulfate blue?

Copper compounds like many of the transition metal compounds have got vivid and distinctive colours – but why?

Task 3: The hole in the ozone layer

Why did we get a hole in the ozone layer? What chemicals were responsible for it? Why were we producing so many of these chemicals? What is the chemistry behind the ozone destruction?


Pre-Knowledge Topics

Chemistry topic 1 - Electronic structure, how electrons are arranged around the nucleus

A periodic table can give you the proton / atomic number of an element, this also tells you how many electrons are in the *atom*.

You will have used the rule of electrons shell filling, where:

The first shell holds up to 2 electrons, the second up to 8, the third up to 8 and the fourth up to 18 (or you may have been told 8).

The 'shells' can be broken down into 'orbitals', which are given letters:'s' orbitals, 'p' orbitals and 'd' orbitals.

You can read about orbitals here:

http://www.chemguide.co.uk/atoms/properties/atomorbs.html#top

3

Now that you are familiar with s, p and d orbitals try these problems, write your answer in the format:

1s2, 2s2, 2p6 etc.

Q1.1 Write out the electron configuration of:

a) Ca b) Al c) S d) Cl e) Ar f) Fe g) V h) Ni i) Cu j) Zn k) As

Q1.2 Extension question, can you write out the electron arrangement of the following ions:

Chemistry topic 2 - Oxidation and reduction

At GCSE you know that oxidation is adding oxygen to an atom or molecule and that reduction is removing oxygen, or that oxidation is removing hydrogen and reduction is adding hydrogen. You may have also learned that oxidation is removing electrons and reduction is adding electrons.

At A level we use the idea of oxidation number a lot!


You know that the metals in group 1 react to form ions that are +1, i.e. Na* and that group 7, the halogens, form -1 ions, i.e. Br -.

We say that sodium, when it has reacted has an oxidation number of +1 and that bromide has an oxidation number of -1.

All atoms that are involved in a reaction can be given an oxidation number.

An element, Na or O_2 is always given an oxidation state of zero (0), any element that has reacted has an oxidation state of + or -.

As removing electrons is **reduction**, if, in a reaction the element becomes **more** negative it has been reduced, if it becomes more positive it has been oxidised.

You can read about the rules for assigning oxidation numbers here:

http://www.dummies.com/how-to/content/rules-for-assigning-oxidation-numbers-to-elements.html

Elements that you expect to have a specific oxidation state actually have different states, so for example you would expect chlorine to be -1, it can have many oxidation states: NaClO, in this compound it has an oxidation state of +1

There are a few simple rules to remember:

Metals have a + oxidation state when they react.

Oxygen is 'king' it always has an oxidation state of -2

Hydrogen has an oxidation state of +1 (except metal hydrides)

The charges in a molecule must cancel.

Examples: Sodium nitrate, NaNO₃

Na +1 $3x O^{2}$ $4xO^{2}$ and 2- charges 'showing'

sulfate ion, SO42-

+1 -6 -8

To cancel: N = +5 S = +6

Q2.1 Work out the oxidation state of the <u>underlined</u> atom in the following:

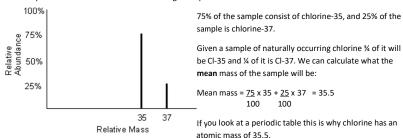
a) MgCO₃ b) SO₃ c) NaClO₃ d) MnO₂ e) Fe₂O₃ f) V₂O₅

g) K $\underline{Mn}O_4$ h) $\underline{Cr}_2O_7^{2-}$ i) \underline{Cl}_2O_4

Chemistry topic 3 - Isotopes and mass

You will remember that an isotopes are elements that have differing numbers of neutrons. Hydrogen has 3 isotopes; $H_1^1 H_1^2 H_1^3$

Isotopes occur naturally, so in a sample of an element you will have a mixture of these isotopes. We can accurately measure the amount of an isotope using a **mass spectrometer**. You will need to understand what a mass spectrometer is and how it works at A level. You can read about a mass spectrometer here:



http://bit.ly/pixlchem3 http://www.kore.co.uk/tutorial.htm http://bit.ly/pixlchem4 http://filestore.aqa.org.uk/resources/chemistry/AQA-7404-7405-TN-MASS-SPECTROMETRY.PDF

- Q3.1 What must happen to the atoms before they are accelerated in the mass spectrometer?
- Q3.2 Explain why the different isotopes travel at different speeds in a mass spectrometer.

A mass spectrum for the element chlorine will give a spectrum like this:

http://www.avogadro.co.uk/definitions/ar.htm

An A level periodic table has the masses of elements recorded much more accurately than at GCSE. Most elements have isotopes and these have been recorded using mass spectrometers.

5

GCSE

11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9
27	28	31	32	35.5
AI aluminium 13	Si silicon 14	P phosphorus 15	S sulfur 16	chlorine 17

A level

B boron	C carbon	N 7 nitrogen	0 8 oxygen	F g fluorine
27.0 AI 13	28.1 Si silicon	31.0 P 15 phosphorus	32.1 S 16 sulphur	35.5 CI thlorine

Given the percentage of each isotope you can calculate the mean mass which is the accurate atomic mass for that element.

Q3.3 Use the percentages of each isotope to calculate the accurate atomic mass of the following elements.

- a) Antimony has 2 isotopes: Sb-121 57.25% and Sb-123 42.75%
- b) Gallium has 2 isotopes: Ga-69 60.2% and Ga-71 39.8%
- c) Silver has 2 isotopes: Ag-107 51.35% and Ag-109 48.65%
- d) Thallium has 2 isotopes: TI-203 29.5% and TI-205 70.5%
- e) Strontium has 4 isotopes: Sr-84 0.56%, Sr-86 9.86%, Sr-87 7.02% and Sr-88 82.56%

Chemistry topic 4 – The shapes of molecules and bonding.

Have you ever wondered why your teacher drew a water molecule like this?

The lines represent a covalent bond, but why draw them at an unusual angle?

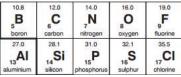
If you are unsure about covalent bonding, read about it here:

http://bit.ly/pixlchem5

http://www.chemguide.co.uk/atoms/bonding/covalent.html#top

At A level you are also expected to know how molecules have certain shapes and why they are the shape they are.

You can read about shapes of molecules here:


http://bit.ly/pixlchem6

http://www.chemguide.co.uk/atoms/bonding/shapes.html#top

- Q4.1 Draw a dot and cross diagram to show the bonding in a molecule of aluminium chloride (AICl₃)
- Q4.2 Draw a dot and cross diagram to show the bonding in a molecule of ammonia (NH₃)
- Q4.3 What is the shape and the bond angles in a molecule of methane (CH₄)?

Chemistry topic 5 - Chemical equations

Balancing chemical equations is the stepping stone to using equations to calculate masses in chemistry.

There are loads of websites that give ways of balancing equations and lots of exercises in balancing.

Some of the equations to balance may involve strange chemical, don't worry about that, the key idea is to get balancing right.

http://bit.ly/pixlchem7

http://www.chemteam.info/Equations/Balance-Equation.html

This website has a download; it is safe to do so:

http://bit.ly/pixlchem8

https://phet.colorado.edu/en/simulation/balancing-chemical-equations

- a. $H_2 + O_2 \rightarrow H_2O$
- b. S₈+ 02→ SO₃
- c. HgO \rightarrow Hg+ 0₂
- d. Zn+ HCl→ ZnCl₂+ H₂
- e. Na+ H₂0 → NaOH + H₂
- f. $C_{10}H_{16}+ CI_2 \rightarrow C + HCI$
- g. Fe+ 02→ Fe2O3
- h. $C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$
- i. $Fe_2O_3 + H_2 \rightarrow Fe + H_2O$
- j. Al + FeO \rightarrow Al₂O₃ + Fe

Chemistry topic 6 - Measuring chemicals - the mole

From this point on you need to be using an A level periodic table, not a GCSE one you can view one here:

http://bit.ly/pixlpertab

7

8

https://secondaryscience4all.files.wordpress.com/2014/08/filestore aga org uk subjects aga-2420-w-trbptds pdf.png

Now that we have our chemical equations balanced, we need to be able to use them in order to work out masses of chemicals we need or we can produce.

The *mole* is the chemists equivalent of a dozen, atoms are so small that we cannot count them out individually, we weigh out chemicals.

For example: magnesium + sulfur → magnesium sulfide

 $Mg + S \rightarrow Mg$

We can see that one atom of magnesium will react with one atom of sulfur, if we had to weigh out the atoms we need to know how heavy each atom is.

From the periodic table: Mg = 24.3 and S = 32.1

If I weigh out exactly 24.3g of magnesium this will be 1 mole of magnesium, if we counted how many atoms were present in this mass it would be a huge number (6.02×10^{23} !!!!), if I weigh out 32.1g of sulfur then I would have 1 mole of sulfur atoms.

So 24.3g of Mg will react precisely with 32.1g of sulfur, and will make 56.4g of magnesium sulfide.

Here is a comprehensive page on measuring moles, there are a number of descriptions, videos and practice problems.

You will find the first 6 tutorials of most use here, and problem sets 1 to 3.

http://bit.ly/pixlchem9

http://www.chemteam.info/Mole/Mole.html

Q6.1 Answer the following questions on moles.

- a) How many moles of phosphorus pentoxide (P₄O₁₀) are in 85.2g?
- b) How many moles of potassium in 73.56g of potassium chlorate (V) (KClO₃)?
- c) How many moles of water are in 249.6g of hydrated copper sulfate(VI) (CuSO₄.5H₂O)? For this one, you need to be aware the dot followed by 5H₂O means that the molecule comes with 5 water molecules so these have to be counted in as part of the molecules mass.
- d) What is the mass of 0.125 moles of tin sulfate (SnSO₄)?
- e) If I have 2.4g of magnesium, how many g of oxygen(O_2) will I need to react completely with the magnesium? $2Mg + O_2 \rightarrow MgO$

Chemistry topic 7 - Solutions and concentrations

In chemistry a lot of the reactions we carry out involve mixing solutions rather than solids, gases or liquids.

You will have used bottles of acids in science that have labels saying 'Hydrochloric acid 1M', this is a solution of hydrochloric acid where 1 mole of HCl, hydrogen chloride (a gas) has been dissolved in 1dm³ of water.

The dm³ is a cubic decimetre, it is actually 1 litre, but from this point on as an A level chemist you will use the dm³ as your volume measurement.

http://bit.ly/pixlchem10

http://www.docbrown.info/page04/4 73calcs11msc.htm

Q7.1

- a) What is the concentration (in mol dm⁻³) of 9.53g of magnesium chloride (MgCl₂) dissolved in 100cm³ of water²
- b) What is the concentration (in mol dm 3) of 13.248g of lead nitrate (Pb(NO₃)₂) dissolved in 2dm 3 of water?
- c) If I add 100cm³ of 1.00 mol dm³ HCl to 1.9dm³ of water, what is the molarity of the new solution?
- d) What mass of silver is present in 100cm³ of 1moldm⁻³ silver nitrate (AgNO₃)?
- e) The Dead Sea, between Jordan and Israel, contains 0.0526 moldm⁻³ of Bromide ions (Br ⁻), what mass of bromine is in 1dm³ of Dead Sea water?

